The driver mutational landscape of squamous cell carcinoma of the ovary arising in mature cystic teratoma

Wednesday 1st November 2017

Dr Susie Cooke
Wolfson Wohl Cancer Research Centre
Institute of Cancer Sciences
University of Glasgow, UK
Mature Cystic Teratoma aka Dermoid Cyst

T2 axial

Image c/o Dr Fiona Bryden, NHS GGC

Ref: https://www.flickr.com/photos/jianhua_qiao_md/sets/72157634596403309/with/9266547358/
Transformed Mature Cystic Teratoma

- 0.1 – 1% of MCT
- Commonly squamous cell carcinoma
- Incidental diagnosis
- Poor prognosis
Squamous-cell carcinoma in mature cystic teratoma of the ovary: systematic review and analysis of published data

Andreas Hackethal, Doerthe Bruegmann, Michael K Bohlmann, Folker E Franke, Hans-Rudolf Tinneberg, Karsten Münstedt

Average age at diagnosis 55yrs

49.8% stage I

50.2% stage II-IV
Scottish Genome Partnership

• Professor Iain MacNeish
• Archival FFPE samples
• Four large UK Gynae Cancer Centres
• Formal path review and mark up
• Macro/microdissected SCC, MCT and normal tissue
• 50 - 200ng DNA
• Agilent ClearSeq Comprehensive Cancer panel
• Mean read depth >100×
Cases of SCC arising in MCT

- Median age 51.0 years (25 – 86)
- 14 of 25 (56%) Stage I
- 11 of 25 (44%) Stage II – IV

Survival by stage

<table>
<thead>
<tr>
<th>% surviving</th>
<th>100</th>
<th>75</th>
<th>50</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (months)</td>
<td>0</td>
<td>24</td>
<td>48</td>
<td>72</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II - IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MCT – somewhat dull....

Mature cystic teratoma

Count of mutations

Case number 1 2 5 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 25 27 28 29 30 31

TP53
PIK3CA
CDKN2A

Missense Mutation
SCC – overall mutation load

SCC – mutations and CNA

Case number	1	2	5	6	7	8	9	10	11	12	13	14	15	19	20	21	22	23	24	25	26	27	28	29	30	31		
TP53	80%																											
PIK3CA	52%																											
CDKN2A	44%																											

- **Gain**: Blue bars
- **Homozygous Deletion**: Black bars
- **Missense Mutation**: Green bars
- **Truncating Mutation**: Red bars
- **Synonymous Mutation**: Pink bars
- **splice Mutation**: Orange bars

Legend

- **TP53** mutation frequency: 80%
- **PIK3CA** mutation frequency: 52%
- **CDKN2A** mutation frequency: 44%
Influence of mutations on outcome

Survival by TP53 mutation status

\[p = 0.0013 \]
Influence of mutations on outcome

Survival by TP53 mutation status

- Mutant
- WT

% surviving

Time (months)

Survival by TP53 mutation status

- Biallelic
- Monoallelic
- Wildtype

% surviving

Time (months)

p=0.0013

p=0.028

p=0.007
Oogenesis and meiosis

Primordial Germ Cell → Oogonium → Primary oocyte → Meiosis I Completed → Secondary oocyte → Meiosis II Arrested Metaphase II → Second polar body

Arrested prophase Meiosis I

Chr1

Chr22

Maternal
Paternal

Adapted from a figure by Rdbickel, released under CCA4.0
Oogenesis and meiosis

Primordial Germ Cell → Oogonium → Primary oocyte → Primary oocyte → Meiosis I completed

Arrested prophase Meiosis I

2

4

Secondary oocyte → Meiosis II
Arrested Metaphase II

First polar body

2

4

Second polar body

Group A

Group D?

Group B

Group C?

Group C?
Specific Conclusions

• MCT few mutations but multiple potential different cells of origin
• SCC ovary HPV negative
• SCC mutations similar to SCC lung
• High overall mutational burden - ?immune checkpoint inhibitors
• Stage remains highly important for prognosis
• Bi-allelic TP53 mutations – ?good prognostic biomarker
General Conclusions

• For distinct, rare tumour types even small cohorts can be used to characterise the disease
• Large amounts of research can be done with small (and relatively cheap!) sequence capture experiments
• Archival FFPE material can give good quality sequencing data when processed carefully
Acknowledgements

Glasgow
Iain MacNeish
Darren Ennis
Suzanne Dowson
Mei Yen Chen
David Millan
Sarah Bell
Lizzie Day
Agata Kochman

Barts
Naveena Singh

Birmingham
Lynn Hirschowitz

Leeds
Nafisa Wilkinson

Lisa Evers
Craig Nourse