Parallel Sessions

Precision Medicine: development, delivery and collaboration

Join the conversation @NHSResearchScot #NRSCConf18
NRS Conference 2018

Parallel Session B: Precision Medicine – development, delivery, collaboration

Chair: Ed Hutchinson – ed.hutchinson@scotent.co.uk
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Topic</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 – 12:10</td>
<td>Session Welcome (Chair)</td>
<td></td>
</tr>
<tr>
<td>12:10 – 12:30</td>
<td>NAFLD - where are we now where do we need to be</td>
<td>Professor John Dillon, Professor of Hepatology and Gastroenterology and NRS Clinical Lead – Hepatology, University of Dundee</td>
</tr>
<tr>
<td>12:30 – 12:50</td>
<td>Future MS: Developing predictive tools</td>
<td>Dr Peter Connick, Senior Clinical Research Fellow in Regenerative Neurology, University of Edinburgh</td>
</tr>
<tr>
<td>12:50 – 13:10</td>
<td>Oesophageal cancer</td>
<td>Professor Zofia Miedzybrodzka, Professor of Medical Genetics, University of Aberdeen.</td>
</tr>
<tr>
<td>13:10 – 13:15</td>
<td>Questions and Discussion</td>
<td></td>
</tr>
</tbody>
</table>
Precision medicine is targeted, individualised care that is tailored to each patient based on his or her specific genetic profile and medical history.

Precision medicine has been made possible through advances in next-generation (whole genome) sequencing, ‘big data’ analysis and a greater understanding of the molecular pathology of disease.

This allows for the stratification of patients e.g. Identifying:
• those that will respond to specific treatments;
• those that will be susceptible to side effects from specific treatments;
• new biomarkers & diagnostics
Advantages of Precision Medicine Approach

Without Personalized Medicine:
Some Benefit, Some Do Not

Patients

Therapy

Benefit
No benefit
Adverse effects

With Personalized Medicine:
Each Patient Receives the Right Medicine For Them

Patients

Biomarker Diagnostics

Therapy

Each Patient Benefits From Individualized Treatment
Scotland’s PM Landscape: NHS Scotland at the Core

Scotland
A unique opportunity

- A single unified health system
- A stable population of c.5 million
- A unique patient identifier used in all contacts with the health system
- Some of the best health data in the world
- High incidence of complex disease

Strong infrastructure and world class clinical and academic expertise creates a vibrant research environment in Scotland with clinical research embedded within our NHS
Scotland’s PM Landscape: PM Components

- Clinical Trial Infrastructure; Clinical & Academic Expertise
- Patient Data; EHRs; Biorepositories; Governance
- NGS; Genome Analysis; ‘Omics; Bioinformatics
- Industry – Pharma; SME
- SG Support: CSO; SFC; SE Health Economics
- Innovate UK
- Digital imaging; Molecular pathology; AI

Coordinated Precision Medicine Approach
Scotland's Precision Medicine Landscape

8th February, 2016

The Scottish Government has committed to provide funding of £4 million over the next 15 months to support the development of the Precision Medicine Ecosystem for Scotland that will co-ordinate precision medicine resources and opportunities across Scotland, bring together the findings from individual research projects and improve information sharing in the fight against diseases.
October 2016

A new collaboration in genomic medicine sees Scotland join AstraZeneca’s Global Genomics Initiative – further demonstrating Scotland’s ability to attract major industry projects.

Mene Pangalos, **Executive Vice President, A/Z:**

“Working together with NHS Scotland, Scottish universities and Stratified Medicine Scotland will be a really important part of our strategy. This collaboration will provide access to consented genomic samples, electronic health records and importantly, the ability to recall patients for deeper clinical investigation to help us better understand the underlying causes of disease”

October 2017

US Life Sciences firm BioClavis sets up base in Glasgow

As part of a £10.5 million investment to life sciences, BioClavis have announced they will be creating a base in the Queen Elizabeth University Hospital in Glasgow.

Harper VanSteenHouse, **BioClavis:**

“We were very impressed with the connectivity that exists in Scotland: between research clinicians, the biorepository, SMS-IC, University of Glasgow, the wider SME community and the support mechanisms in place via Scottish Enterprise to assist with our growth plans.”
Nicola Sturgeon MSP, First Minister of Scotland

“Whilst the SIA consortium has been led by the University of Glasgow, the process has very much been characterised by a genuine ‘Team Scotland’ approach, with support, commitment & real insight from industry, academia & the NHS across Scotland. This is another positive example of collaborative working in Scotland which reinforces our commitment to world class research & innovation, supporting advances in healthcare, improved patient outcomes & sustainable economic growth”

Dr Victor Dzau, President of US National Academy of Medicine

“This audit outlines the actions and game-changing opportunities which will allow Scotland to realise the full potential of precision medicine…….It promises to deliver both patient and economic benefit for Scotland, and Scotland should now do all it can to realise that promise”

ed.hutchinson@scotent.co.uk
Scottish PM Landscape: Stratified Medicine Scotland Innovation Centre
Exemplar Projects

Irritable Bowel Disease/Chronic Obstructive Pulmonary Disease (IBD/COPD)

- Study focused on early identification of patient variability through a pharmacogenomics strategy
- Biopta had observed that in vitro responses to known drugs, using human tissue samples collected from patients with IBD or COPD, can vary quite significantly between patients
- The objective was to create a preclinical model to understand the genetic basis for variability to known drugs and to relate genomics to the variation in drug efficacy between patients
- Led by Dr David Bunton at Biopta/ReproCell Europe

Oesophageal Cancer (OC)

- a highly aggressive common form of cancer with a rising incidence worldwide and poor prognosis
- Median survival following surgery/chemotherapy remains only 10 months. In the UK, 1 yr survival is 40%, and only 15% survive 5 yrs
- Study will focus on the utility of an Epidermal growth factor Receptor (EGFR) tyrosine kinase antagonist called Gefitinib in advanced OC
- Aim is to identify a genetic signature for Gefitinib response and if successful, to develop a test to predict if OC patients will respond to the drug
- Led by Professor Zofia Miedzybrodzka and Dr Russell Petty at Aberdeen University & NHS Grampian

Rheumatoid Arthritis (RA)

- the most common of the chronic inflammatory arthritic conditions - approximately 400,000 new cases in Europe and the US each year
- Within Europe the direct cost in terms of managing RA is ~£11.6Bn pa whilst the indirect costs are an additional £14.1Bn pa
- Current RA drug therapy is dominated by methotrexate (MTX). Of 60% of RA patients on MTX either do not respond or show toxic effects
- Study focuses on identifying a genetic signature in RA patients that can predict those who will respond to MTX treatment
- Led by Professor Iain McInnes at Glasgow University

High Grade Serious Ovarian Cancer (HGSOC)

- 5th most common cancer
- Treatment is usually through a combination of resective surgery and platinum based chemotherapy
- Study focuses on understanding if we can extend the use of novel PARP inhibitor drugs into a wider group of HGSOC patients
- Currently these drugs are only prescribed in patients having genetic mutations in their germline DNA (only 15% of all HGSOC patients)
- An additional 35% of patients may harbour these mutations. If successful we will seek to extend the licencing of PARP inhibitors to this wider group of patients
- Led by Prof. Charlie Gourlay, Univ Edinburgh
Precision-PANC is a project intended to rapidly characterise an individual patient’s pancreatic cancer and introduce each to an appropriate clinical trial designed to treat that specific tumour type. This project coincides with a recent analysis of the blueprint of pancreatic cancer, revealing for the first time that there are four distinct types of mutation. It is led by **Prof. Andrew Biankin, Director of Wolfson Wohl Cancer Research Centre, University of Glasgow**

FutureMS is a Scotland-wide research project for people recently diagnosed with relapsing-onset multiple sclerosis. Led by **Prof. Siddharthan Chandran** at the [University of Edinburgh Anne Rowling Regenerative Neurology Clinic](http://future-ms.org/), with [Stratified Medicine Scotland](http://future-ms.org/), the project uses clinical examinations, MRI brain imaging and genetics to try to predict disease severity in people with MS.

Visit http://future-ms.org/
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Welcome (Chair)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 – 12:10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>NAFLD - where are we now where do we need to be</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:10 – 12:30</td>
<td>Professor John Dillon, Professor of Hepatology and Gastroenterology and NRS Clinical Lead – Hepatology, University of Dundee</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Future MS: Developing predictive tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:30 – 12:50</td>
<td>Dr Peter Connick, Senior Clinical Research Fellow in Regenerative Neurology, University of Edinburgh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Oesophageal cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:50 – 13:10</td>
<td>Professor Zofia Miedzybrodzka, Professor of Medical Genetics, University of Aberdeen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Questions and Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:10 – 13:15</td>
<td></td>
</tr>
</tbody>
</table>
School of Medicine
University of Dundee

NAFLD - where are we now where do we need to be.
What am talking about

→ The lecture will describe non-alcoholic fatty liver disease and its consequences.
→ Outline the challenges of stratifying the disease and its diagnosis and
→ The solutions that Scotland is bringing forward.
“...we have encountered patients who did not drink, who had not been subject to bypass surgery, and who had not taken drugs that may produce steatohepatitis, yet had in their liver biopsy specimens changes that were thought to be characteristic of alcoholic liver disease. In these instances, the biopsy evidence sometimes caused clinicians to persever e unduly in their attempts to wrench from the patient an admission of excessive alcohol or to obtain a confirmation of such habits from relatives of the patients. Thus, the misinterpretation of the biopsy in this poorly understood and hitherto unnamed condition caused embarrassment to the patient and the physician.”

Jurgen Ludwig, MD

Alcohol vs Non-alcohol

- Ludwig et al (1980) coined the phrase NASH. Clinicians were known to ‘persevere unduly in their attempts to wrench from the patient an admission of excess alcohol intake’

- What is an accepted alcohol intake
 - Constantly changing

- Powell et al in 1990 excluded patients who consumed more than 40g ethanol per week

- Bugianesi et al (2002) excluded patients who consumed more than 140g per week
What is NAFLD?

Common

Potential to progress (S – NASH)

Associated with the metabolic syndrome

Pathogenesis is unknown

Treatment options are limited

Only going to get worse

10-20% general population have fatty liver

20-30% of those will have NASH

Of these 20% will have cirrhosis within 20 years

In obesity rate up to 60%
Metabolic syndrome: Multiple, Interrelated Factors

- Type II Diabetes
 - Fasting Glucose
 - ≥ 110 mg/dL

- Obesity

- Triglycerides
 - ≥ 150 mg/dL

- HDL Cholesterol
 - < 40 mg/dL (Men)
 - < 50 mg/dL (Women)

- NAFLD/NASH

- Hypertension

Adapted from Marchesini G et al. Hepatology 2003;37:917-923.
Histologic Features of NASH

Spectrum
- Steatosis → steatohepatitis → steatohepatitis with fibrosis → cirrhosis

Steatohepatitis
- Inflammation: usually mild, lobular, and mixed mononuclear and neutrophilic
- Hepatocyte degeneration: ballooning and Mallory bodies
- Fibrosis: initially pericellular; later bridging

Cirrhosis
- Occurs in up to 20% over 10 years
Hepatic steatosis

Steatosis
NASH
Healthy Liver Cirrhosis
NAFLD disease spectrum
A disease progression?

Simple Steatosis
Steatosis
No excess liver mortality
→ Increased Cardiovascular mortality

Non-alcoholic Steato-hepatitis
Hepatic inflammation and fibrosis
Excess liver mortality
Insulin resistance
Oxidative stress
Failed adaptation
NAFLD Diagnosis steatosis or NASH The Challenge
Fibrosis or no fibrosis

30% of the population
→ ½ have normal LFTs
→ All should have fat in the liver
 → Abdominal Ultra sound
 → Standardisation?
→ MRI
 → Standardisation?
 → Coils
→ Liver biopsy
Liver Biopsy
“The Gold Standard”

Invasive
Costly
Observer variability
Sampling error
Morbidity and mortality

Diagnosis by histology
1% major complication
0.1-0.01% mortality
MRI imaging Proton derived Fat Fraction (PDFF) the gold standard for steatosis

No steatosis

Severe steatosis
corrected T1 MRI imaging FDA approved surrogate for inflammation biomarker of NASH
THE SOLUTION TO DIAGNOSIS PROBLEM
The Treatment for NASH
The dilemma “THE DIABETES PARDIGM”

Fig. 1 Forest plot of RCTs comparing the effect of different degrees of weight loss (%) on histological NAS. Outcome: mean differences in NAS following weight loss ≥7% vs weight loss <7%. IV, inverse variance

To solve the NASH problem
What do we need

Well phenotyped patients
Disease registry, National Biobank and database
→ long term follow-up
 → Who will progress
 → To what complications
→ Baseline biological samples
 → To validate biomarkers
→ Clinical endpoints

How do we get it

Funded by a coalition of Pharma, CROs and CSO??
Clinical, laboratory and genomic predictors of disease activity in people recently diagnosed with relapsing-onset multiple sclerosis

Peter Connick
Senior Clinical Research Fellow
The University of Edinburgh
Highly variable disease severity

A ‘suite’ of treatment options
Female sex (higher ARR)

Time since onset (17% decrease every 5-years)

JNNP 2008; 79: 1368–75.

No clinically applicable predictive tool currently exists
MS DMT - the debate

ESCALATION strategy

Minimises treatment associated risks

INDUCTION strategy

Minimises disease associated risks

HARMS

- Allow potentially preventable relapses
- Risk missing the narrow “window of therapeutic opportunity” for good disease control to influence long-term outcome
- Wasted drug & increased long-term care costs

HARMS

- Excess treatment associated risk
- Wasted drug-costs
Aims

1) Evaluate the clinical, laboratory, and genomic contribution to disease course

2) Develop tools to support individual-level prognostication at diagnosis
 • Allow better care planning
 • Allow the possibility of proactive and personalised decision making

3) Develop a Scottish MS Clinical Research network that will support high-value research
FutureMS design

- **n = 400 newly Dx RRMS**
- **Month 0**
 - Baseline endpoint measures (imaging + clinical)
 - Clinical / Laboratory / Genomic candidate predictor capture
- **Month 12**
 - Final endpoint measures (imaging + clinical)
 - Individual prediction of future disease activity
Clinical, laboratory, and genomic predictors of disease activity in people with newly diagnosed relapsing-onset MS

futureMS

NHS Grampian
• Margaret Ann MacLeod

NHS Tayside
• Jonathan O’ Riorden

NHS Lothian
• Siddharthan Chandran
• Peter Connick
• Liz Elliot
• Suzanne Quigley

NHS Greater Glasgow and Clyde
• James Overell
• Stewart Webb
• Sarah Jane Martin

NHS Highland
• Francisco Javier Carod Artal

future-ms.org
Recruitment

The graph shows the progress of recruitment over time, comparing the number of individuals recruited, the target of 400, and the number of 2nd visits. The data is divided into two phases: Pilot and Open Recruitment. The target of 400 is clearly marked on the y-axis. The graph indicates a steady increase in recruitment, approaching the target by the end of the observed period.
Cohort characteristics

- **Sex ratio**: 3:1 (F:M)

- **Age**: median 38.0 years (IQR 30.1 – 46.1)
- **Ethnicity**: >99% white Scottish/British
- **BMI**: median 26.2 (IQR 23-31)

- **Smoking status**: 48% never, 37% previous, 15% current
- **Co-morbidities**: median 1 (IQR 0 – 2)

- **Employment status**: 60.4% FT, 22.6% PT, 17% unemployed
Cohort characteristics

Median: 2.05 years
Range: 0.17 to 33.94

Diagnosis to recruitment
Median: 62.5 days
IQR: 36 to 103 days
Cohort characteristics

- DMT use (whole cohort): 39.1%
- DMT use (completed participants): 51.6%
- Median time from recruitment to DMT initiation: 16 days
NHS Scotland capability build

Generation of a ‘single-hub’ clinical network for MS research in Scotland
Generation of a brain image analysis pipeline for MS research in Scotland
NHS Scotland E-Health processes for data flow into research
Demonstration of Scottish capacity to integrate clinical, NHS, and genomic datasets
Long term opportunities

• Further ‘waves’ of cohort evaluation

• Leveraging for recruitment to existing / planned projects (with extensive prior characterisation)

• Exploitation of ‘banked’ tissue samples

• Real-world medicine test-bed
 (including contrast to other international cohorts where DMT use is the norm)
NHS Research Scotland Annual Conference
Parallel Sessions

Questions

Join the conversation @NHSResearchScot #NRSCConf18